
Patent Title:

Computational Methods Driven by a Sanskrit-Based,

Self-Refining Wave-Particle Numeric Framework

Abstract:

A computational method and system for performing dual-nature

arithmetic operations derived from Sanskrit grammar. A

processor receives two numeric operands and applies a

Sanskrit-derived wave-particle operator "*" that fuses

discrete (particle-like) and continuous (wave-like) semantic

attributes. The resulting composite metric is then validated

by cross-referencing at least four independent prior works,

including the Viswamitra Rule of Panini’s grammar and four

confidential references, full disclosures of which will be

provided to the Examiner in a confidential appendix in

accordance with the Patent Office’s confidentiality

provisions. In one embodiment, for any two positive integers

m and n, the system—based on this Sanskrit-based

wave-particle computation—yields a quantum-semantic result,

as exemplified by 2 * 3 = 1 in decimal base. This technology

enables novel numeric transforms with applications in

cryptography, semantic data analysis, and advanced,

next-generation computing architectures.

The present invention further provides a computing system

and method that leverage the formal grammar rules of

Sanskrit—specifically Panini’s Maheshwara Sutras and Mimamsa

principles—to carry out computation, in some embodiments

directly in hardware, thereby eliminating conventional

queuing mechanisms and enhancing parallelism. The system

inherently enforces constraints via the Viswamitra Rule, a

deterministic grammatical guard derived from Sanskrit which

guarantees determinism and improves goal-oriented selection.

This architecture offers a self-optimizing supercomputer

capable of real-time inference without reliance on

traditional queue-based synchronization, with applicability

to quantum computing, parallel software frameworks, and AI

systems.

Description:

Field of the Invention:

This invention relates to computer-implemented arithmetic

operations and, more particularly, to methods for performing

dual-nature wave-particle numeric compositions inspired by

Sanskrit grammatical principles. This invention further

relates generally to computer architecture, parallel

computation and machine learning & inference and in

particular to the Halting Problem and Quantum Computing. It

concerns a hardware-based supercomputing system that

implements Sanskrit grammar as its native computation to

achieve traditional queue-free parallel execution,

goal-oriented selection processing for machine learning and

inference. The system further solves quantum-algebraic

equations by identifying the core computational problem

embodied in an equation, mapping that problem to equivalent

Sanskrit-grammatical constructs, and proving their

equivalence to resolve the quantum-algebraic computation.

Background of the Invention:

Conventional arithmetic operators treat numbers as purely

scalar entities, limiting their ability to capture richer

semantic or contextual information. Emerging fields—such as

quantum semantics, advanced cryptographic transforms, and

cognitive computing—demand arithmetic primitives that fuse

discrete and continuous attributes of numeric data.

Applicant has discovered that modeling numeric operands

through analogies to Sanskrit grammar, specifically

leveraging Panini’s rules and the Viswamitra Constraint,

yields a novel "wave-particle" operator. Unlike standard

multiplication or addition, this operator outputs values

encoding a composite metric, opening new avenues for

semantic number theory and secure data transformations.

Further, the traditional computing architectures rely on

algorithmic queue-based synchronization to manage parallel

tasks. Such queuing introduces latency and memory overhead—

factors intimately tied to the Halting Problem. In

contrast, Applicant has discovered what is herein called the

Viswamitra Rule, a Sanskrit-grammar-derived constraint that

ensures every computation path has determinism. Halting

Problem which also comes in the way of goal oriented

selection using machine learning and this again comes in the

way of Quantum computers similarly face constraints rooted

in unresolvable algorithmic constructs.

Panini’s Maheshwara Sutras codify Sanskrit grammar to forbid

certain constructs and prevent premature terminations. For

instance, one derived rule bars any sentence from ending

in sunya (zero), a constraint our system directly leverages.

When this grammar-inspired framework is mapped onto machine

operations, the resulting architecture obviates conventional

queue mechanisms and enforces fully deterministic execution

without auxiliary control structures. By contrast, existing

computing architectures often introduce premature

optimizations that rely on zero-terminated strings, a

practice that continues to produce string-handling errors

and related failures throughout the software and hardware

stack. Sanskrit grammar based computational system

guarantees no pre-mature optimization.

Definitions (for this disclosure):

As used herein:

Self-refining (also referred to herein as

"self-optimization") :- The term "self-optimization" refers

to the suite of optimization mechanisms native to Sanskrit

grammar — embodied in Panini’s Maheshwara Sutras and Mimamsa

principles — that enable the system to iteratively refine

operand mappings and computational pathways without external

tuning.

Person having ordinary skill in the art (PHOSITA):- Because

this invention integrates Sanskrit grammar, theoretical

computer science, the Halting Problem, and quantum algebra,

a PHOSITA is assumed to have at least the following:

1. An understanding of the Halting Problem, as exemplified

by the challenges of unavoidable queues in parallelization

and goal-oriented selection set forth in Appendix A

(Questions 1 and 2) of this specification;

2. A graduate-level grounding in compiler design and formal

language theory, including their historical linkage to

Sanskrit parsing;

3. Proficiency in Panini’s Maheshwara Sutras — particularly

a deep understanding of the "why" aspect of the

Visvamitra Rule — combined with Mimamsa inference

principles, and their similarities to modern

semantic-computing approaches (e.g., machine learning);

4. Knowledge of quantum-algebraic methods and, importantly,

their limitations.

Summary of the Invention:

The present invention comprises four primary modules—Core

Module (CM), Translation Module (TM), Programming Module

(PM), and Pre-Programming Module (PPM)—each of which may be

implemented in software, hardware (e.g., general-purpose

processors, FPGAs, or ASICs), or a combination thereof, and

which collectively enable Sanskrit-based dual-nature

arithmetic computation.

Core Module (CM):-

 Implements the processor-based technique for a

Sanskrit-derived wave-particle arithmetic operation:

 1.1. Operand Acquisition

 Receive a first operand and a second operand.

 1.2. Dual-Nature Operation

 Apply a "*" operator that fuses discrete

(particle-like) and continuous (wave-like) semantic

attributes of the operands.

 1.3. Result Generation

 Produce a result value encoding the composite

wave-particle metric.

 1.4. Result Validation:

 Cross-verify the result against (i) the Viswamitra

Rule of Panini’s grammar and (ii) four confidential

references, full disclosures of which will be provided in a

confidential appendix to the Examiner under the Patent

Office’s confidentiality provisions.

Translation Module (TM):-

 Maps an arbitrary, high-level problem statement into

operands and invokes the CM; comprises:

 2.1. Wave-Component Extraction

 2.2. Particle-Component Extraction

 2.3. Core Dual-Nature Invocation (as per CM steps 1.2–

1.4)

 2.4. Iterative Refinement

 – If validation fails, return to Wave-Component

Extraction.

 – Upon successful validation, record the final

operand mapping for developer reference to improve

subsequent TM versions.

 – If validation continues to fail after n

iterations, log the full trace to aid debugging and CM

self-optimization.

 Both the CM and TM incorporate a Sanskrit Grammar &

Inference Engine that parses input strings using Panini’s

Maheshwara Sutras and Mimamsa principles, thereby

eliminating algorithmic queues in parallel execution and

enforcing deterministic, goal-oriented branch selection.

Programming Module (PM):-

 A repository of text files containing natural Sanskrit

sentences, for direct input to the TM.

Pre-Programming Module (PPM):-

 Processes an arbitrary collection of text files written

in any natural language to produce a valid PM.

Example:- A developer writes using Sanskrit-based constructs

and executes them via the PM, while a general user’s input

is handled through the PPM.

Claims:

What is claimed is:

1. A computational method for performing a dual-nature

arithmetic operation, the method comprising:

a. receiving, at a processor, a first operand and a second

operand;

b. applying, by the processor, a Sanskrit-derived

wave-particle operator "*" to the first and second operands,

wherein the operator "*" is configured to fuse discrete

(particle-like) and continuous (wave-like) semantic

attributes of the operands into a composite wave-particle

metric;

c. generating, by the processor, a result value encoding the

composite wave-particle metric; and

d. providing the result value.

2.The method of claim 1, wherein the generating of the

result value further comprises validating the result by

cross-referencing at least five independent prior works, the

cross-referencing including:

(i) the Viswamitra Rule of Panini’s grammar; and

(ii) at least four confidential references, full disclosures

of which will be provided to the Examiner in a confidential

appendix in accordance with the Patent Office’s

confidentiality provisions.

3. A Sanskrit-based self-optimizing on-board supercomputer

system, comprising:

 (a) a Sanskrit Grammar Module configured to parse input

instructions according to Panini’s Maheshwara Sutras and

Mimamsa principles;

 (b) a Mimamsa Inference Engine coupled to the Sanskrit

Grammar Module and configured to dynamically select

computational branches based on context and goal-oriented

evaluation without iterative search;

 (c) a Compiler configured to translate high-level

problem descriptions into sequences of Sanskrit grammar

instructions;

 (d) a Microarchitectural Mapping Layer that maps parsed

Sanskrit instructions directly to processing elements and

eliminates algorithmic queues during parallel execution;

 (e) a plurality of Processing Elements operable in

parallel to execute the mapped instructions; and

 (f) the Viswamitra Rule Module of claim 1;

 wherein the system enforces deterministic processing and

obviates conventional queue-based synchronization

mechanisms.

4. The system of claim 3, wherein the Sanskrit Grammar

Module implements all instructions as direct applications of

Panini’s sutras or Mimamsa inference rules.

5. The system of claim 3, wherein the Mimamsa Inference

Engine enforces goal-oriented selection by applying

Mimamsa’s principles to resolve branching without requiring

post-compilation searches.

6. The system of claim 3, wherein the Microarchitectural

Mapping Layer prevents any algorithmic queueing exclusively

by virtue of the Sanskrit instruction-based mapping.

7. The system of claim 3, wherein the plurality of

Processing Elements are implemented on one or more

field-programmable gate arrays (FPGAs).

8. The system of claim 3, further comprising a Quantum

Algebraic Solver Module that maps Sanskrit grammar

constructs to quantum algebraic formulations for solving

S-matrix bootstrap equations.

9. The system of claim 8, wherein the Quantum Algebraic

Solver Module is configured for real-time inference in

quantum computing and artificial-intelligence applications.

10. The system of claim 3, wherein the Compiler further

supports translation of non-Sanskrit source code into

Sanskrit instruction sequences.

11. A method for on-board execution of quantum algebraic

equation solving in a Sanskrit-based self-optimizing

supercomputer, comprising:

 (a) translating a high-level problem description into a

sequence of Sanskrit grammar instructions using a compiler;

 (b) parsing the Sanskrit instruction sequence via a

grammar module that enforces Panini’s Maheshwara Sutras and

Mimamsa rules;

 (c) mapping each parsed instruction directly to

operations on processing elements via a microarchitectural

mapping layer, thereby eliminating algorithmic queues;

 (d) executing the mapped instructions in parallel on the

processing elements; and

 (e) applying a Mimamsa inference process to select

computational branches in real time without iterative

search.

12. The method of claim 11, wherein the parsing step

prevents constructs equivalent to "sunya" endings in

instruction strings, thereby guaranteeing non-premature

termination.

13. The method of claim 11, further comprising mapping

selected Sanskrit instructions to quantum algebraic

operations to solve S-matrix bootstrap equations.

14. The method of claim 11, wherein the execution step is

performed on one or more FPGAs implementing the

microarchitectural mapping layer.

15. The method of claim 11, further comprising translating

non-Sanskrit code into Sanskrit instructions that correspond

to Mimamsa inference rules for goal-oriented computation.

16. A computer program product, comprising a non-transitory

storage medium bearing program code that, when executed by

one or more processors, causes the system to perform the

method of any one of claims 11 to 15.

Incorporation by Reference:

Appendix A, entitled "Sanskrit-Based On-Board Supercomputer"

and "Sanskrit Technologies: 1st POC," is hereby incorporated

by reference in its entirety.

Appendix A: Combined Document Follows from Next Page

Sanskrit Technologies: 1

st

 POC

1. We use an fpga using a traditional algorithm and solve a

problem like shortest path.

2. We use an fpga using our Sanskrit grammar based algorithm

and solve the same problem. In doing so, we will show

leapfrog improvement in performance.

All we need is to write the code in C with cloud instances

supporting fpga.

3. Fpga:

3.1. We shall use vitis_hls and get the .xo file for,

 say, the sanskrit.c

3.2. Using AWS HDK bash script, get flash image and

publish the image

3.3. Load this in AWS F1 instance

 3.4. Write run.c code and using mmap run the fpga.

4. To write the said sanskrit.c, estimated time is,

maximum 4 years.

Document History:

Bangalore, 2025Jul06: GNVS Sudhakar: Initial document

Bangalore, 2025Jul26: GNVS Sudhakar: Current version

