
Evaluation of the Sanskrit-Based “Wave-Particle”
Computing Framework

Overview of the Patent’s Claims

The patent in question (application no. 202541071171) proposes a novel computing architecture inspired by
Sanskrit grammar, claiming to overcome fundamental limitations of conventional computation such as the
Halting Problem. In summary, the patent describes a “Sanskrit-based, self-refining wave-particle
numeric framework” with the following key elements:

Dual-Nature Arithmetic (Wave-Particle Operator): A special arithmetic operator (*) is defined to
fuse “discrete (particle-like) and continuous (wave-like) semantic attributes” of two numbers . This
“wave-particle” operation produces a composite result that encodes both numeric and contextual/
semantic information. For example, the patent bizarrely claims that under this system “2 * 3 = 1 in
decimal base,” illustrating that the result is not ordinary multiplication but a “quantum-semantic”
transformation of the inputs . The idea is that numbers carry dual meanings (like a wave and a
particle), and combining them yields a result in a new semantic space, with potential applications in
cryptography and data analysis .

Viswamitra Rule – Ensuring Deterministic Termination: At the core of the framework is a
constraint derived from Sanskrit grammar called the “Viswamitra Rule.” This rule is presented as a
“deterministic grammatical guard” that guarantees every computation path is deterministic and
avoids non-termination . The patent asserts that conventional parallel computing relies on
queue-based synchronization (tasks waiting in queues), which introduces latency and uncertainty,
“factors intimately tied to the Halting Problem” . In contrast, the Viswamitra Rule is said to eliminate
the need for such queues by enforcing a structured execution order, thereby sidestepping the
conditions that lead to indeterminate hangs or deadlocks . Essentially, the system’s “grammar-
inspired framework” forbids certain problematic constructs in code, analogous to how Panini’s
grammar forbids malformed sentences. For instance, Panini’s Maheshwara Sutras include a rule
that no valid Sanskrit sentence may end in sūnya (zero or null); the patent leverages this by
disallowing any computational sequence that would terminate in a null state . By preventing such
“premature terminations” or null-endings, the architecture aims to ensure that every initiated
computation completes in a well-defined way (no infinite loops or dead-end states) .

Elimination of Queue-Based Parallelism: The proposed hardware/software architecture claims to
achieve “queue-free” parallel execution. Instead of typical threads or processes waiting in buffers
or locks, instructions are organized and dispatched according to Sanskrit grammatical rules (Panini’s
sutras) and Mīmāṁsā (an Indian logical framework) principles . A Sanskrit Grammar Module
parses instructions using these rules, and a Microarchitectural Mapping Layer maps them directly
onto hardware processing elements without the usual scheduler queues . The Viswamitra
Rule module then purportedly ensures deterministic order and “goal-oriented selection” of branches
at run-time . The net effect, according to the patent, is a system that executes many operations

•
1

2

3

•

4

5

6

7

7

•

8 9

10 11

4

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=m%20and%20n%2C%20the%20system%E2%80%94based,based
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=m%20and%20n%2C%20the%20system%E2%80%94based,based
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=wave
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=queuing%20mechanisms%20and%20enhancing%20parallelism,The%20system
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Further%2C%20the%20traditional%20computing%20architectures,rely%20on
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=concerns%20a%20hardware,that
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=operations%2C%20the%20resulting%20architecture%20obviates,conventional
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=system%2C%20comprising%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=,that%20maps%20parsed
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=queuing%20mechanisms%20and%20enhancing%20parallelism,The%20system

in parallel with deterministic outcomes and no run-time thread contention, thereby avoiding
the unpredictable waiting or non-termination scenarios that plague concurrent algorithms .
The patent explicitly ties this to the Halting Problem, suggesting that the failure to avoid queuing and
nondeterministic branching in conventional architectures is an embodiment of the halting issue – one
which their Sanskrit-based design fixes by construction .

Self-Optimization and “Real-Time” Inference: The architecture is described as self-refining (or
self-optimizing) in the sense that it can iteratively improve its internal mappings using the grammar’s
native optimization rules . It consists of modules for translation (mapping arbitrary problems into
Sanskrit-based representations), programming (using Sanskrit sentences as code), and even pre-
programming (converting other languages into Sanskrit format) . The inventors claim this
yields a “self-optimizing supercomputer” capable of real-time inference without conventional
synchronization overhead . They foresee applications in machine learning, parallel
computing, and quantum computing, claiming that the same Sanskrit-grammar approach can
map and solve quantum algebraic equations (like S-matrix bootstrap problems) in hardware .
In effect, they are proposing a new computing paradigm where Sanskrit grammar rules are baked into
the processor to guide execution flow, allegedly leading to performance and correctness benefits in
domains requiring massive parallelism and intelligent search.

How the Halting Problem Is Addressed in the Patent

A central claim of this patent is that it “overcomes or avoids the Halting Problem” by using the above
Sanskrit-based principles. The Halting Problem, formally, is the well-known undecidable question of
whether a given arbitrary program/input will eventually halt or run forever. By Turing’s 1936 result, no
general algorithm can solve this for all possible programs . The patent’s approach to this problem is
unconventional: rather than a direct algorithm to decide halting, it redefines the computational
framework so that halting issues ostensibly do not arise in the first place.

Interpretation of Halting as a Queue/Branching Issue: The inventors frame the Halting Problem in
practical terms as “the failure to avoid queueing in parallelism and the inability of goal-oriented selection using
machine learning” . In other words, they correlate non-termination and unpredictability with
scenarios like tasks waiting indefinitely in a queue or an algorithm endlessly exploring options without
converging to a goal. By this interpretation, a system that can always pick the correct next action (goal-
directed) and that never makes tasks wait on each other would, in practice, never fall into a halting state.
This is admittedly a non-standard interpretation of the Halting Problem – they are focusing on specific
manifestations (deadlocks, infinite search loops) rather than the general formal problem. Nonetheless, the
patent argues that by enforcing determinism on every computational path via the Viswamitra Rule,
these manifestations of the halting issue are eliminated . Every branch in a computation is resolved by
grammatical rules (much as a Sanskrit sentence is unambiguously parsed), preventing indecision or infinite
backtracking. Moreover, by disallowing “zero termination” (no process can end in a null state or half-finished
state), the system ensures that no thread or computation just stalls without completing .

Panini’s Grammar Constraints as a Guard: The use of Paninian grammar is essentially a built-in correctness
filter. Panini’s Maheshwara Sutras define the foundational sound and symbol sequences in Sanskrit, and
the grammar’s rules (over 4,000 sutras) include meta-rules to prevent improper formulations. The patent
cites one such rule derived from these sutras that “bars any sentence from ending in śūnya (zero)”, meaning a
well-formed sentence cannot terminate abruptly or without meaningful content . By analogy, the

6 9

12 5

•

13

14 15

16

17 18

19

12 20

21

7

7

2

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=operations%2C%20the%20resulting%20architecture%20obviates,conventional
https://breakthroughinitiatives.org/forum/downloadfile/25#:~:text=of%201850s%27%20black%20body%20radiation,This%20affects%20quantum%20computers%20also
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Further%2C%20the%20traditional%20computing%20architectures,rely%20on
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Self,as
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Programming%20Module%20%28PM%29%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Example%3A,based%20constructs
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=directly%20in%20hardware%2C%20thereby%20eliminating,conventional
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=inference,algebraic
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Algebraic%20Solver%20Module%20that%20maps,Sanskrit%20grammar
https://en.wikipedia.org/wiki/Halting_problem#:~:text=In%20computability%20theory%20%2C%20the,101%20but%20not%20computable
https://breakthroughinitiatives.org/forum/downloadfile/25#:~:text=of%201850s%27%20black%20body%20radiation,This%20affects%20quantum%20computers%20also
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=tasks,and%20memory%20overhead%E2%80%94
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid

computing system is designed so that a process cannot terminate on an undefined state or without
producing a result – which would be akin to a program halting unexpectedly or getting stuck. This is an
interesting linguistic parallel to programming: it’s akin to saying every function must return a value that is
grammatically “complete,” and infinite loops or null returns are not syntactically valid in the language. The
Viswamitra Rule (named after an ancient sage, but essentially an invention in this context) generalizes this
idea to all execution paths: it “forbids certain constructs and prevents premature termination” in code .
The result is that any program admitted by this system should, by design, have a well-defined halting point
(just as any valid Sanskrit sentence must end properly with a finite clause). If a sequence of instructions
would lead to an open-ended or ambiguous state, the grammar engine would reject or reformulate it. In
the patent’s own words, this deterministic grammar constraint “ensures every computation path has
determinism”, thereby avoiding the undecidability that arises from “unresolvable algorithmic constructs” in
ordinary computers .

Goal-Oriented Branch Selection: Another aspect the patent stresses is “goal-oriented selection without
iterative search” . This refers to the system’s use of Mīmāṁsā inference principles (Mīmāṁsā is a
school of Indian philosophy concerned with scriptural interpretation) to choose the correct branch in a
computation based on context and desired outcome. In practical terms, this could mean that instead of
blindly exploring multiple possibilities (which could cause non-termination in AI search or machine learning
algorithms), the system uses encoded knowledge or rules to prune away irrelevant paths immediately. By
always pursuing a productive path, the computation doesn’t get stuck in infinite exploration. The patent’s
Translation Module in fact includes an “Iterative Refinement” loop that keeps adjusting the operand
interpretation until the result passes validation, but notably if after n iterations it still fails, it logs a
trace for debugging and self-optimization rather than looping endlessly . This indicates that
even in its refinement process, they intend to avoid infinite loops by design – a failed computation is halted
after a bounded number of tries and flagged, rather than allowed to spin forever. In essence, they are
embedding a meta-halting condition: the system knows when to stop trying something that isn’t working,
guided by the grammar and inference rules.

Overall, the patent’s strategy to “overcome” the Halting Problem is to restrict the domain of computation
and embed logical/grammatical constraints so deeply into the execution pipeline that undecidable cases
simply cannot be expressed. It trades generality for determinism. Every program must adhere to the
grammar (or be translated into one that does), and the grammar is crafted such that all valid programs will
halt with a result. This is analogous to how certain well-structured programming languages or models
guarantee termination – for example, total functional programming languages ensure every function is
total (halts for all inputs) by forbidding unbounded recursion or requiring a decreasing metric in loops.
Indeed, in real-time and safety-critical systems, engineers often deliberately use restricted language
subsets or formal methods to ensure that programs cannot run forever or deadlock. As the Wikipedia
entry on the Halting Problem notes, one practical approach is to “deliberately use a computer language that is
not quite fully Turing-complete,” i.e. a language that guarantees all routines finish . The Sanskrit-based
framework is effectively proposing such a language: one that sacrifices some of the free-form power of a
Turing machine for the sake of guaranteed decidability and concurrency safety. This does not mean the
halting problem is solved in the general case – it means they avoid the general case. The system would
not be able to represent a program that, say, tries to solve the halting problem for arbitrary input (just as
you cannot write an infinite loop in some total languages); but any program you can write in it should halt
by construction. In summary, the Halting Problem is “overcome” in this framework only in the same sense
that a train stays on track by design: it cannot possibly do otherwise, but only because it is constrained to a
particular track.

7

21

22 23

24 25

26

3

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Mimamsa%20principles%3B
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=,process%20to%20select
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%E2%80%93%20If%20validation%20fails%2C%20return,Component
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%E2%80%93%20If%20validation%20continues%20to,fail%20after%20n
https://en.wikipedia.org/wiki/Halting_problem#:~:text=but%20are%20also%20guaranteed%20to,3

Soundness of the Approach vs. Theoretical Computer Science

From a theoretical computer science perspective, the claims of this patent raise immediate red flags. The
Halting Problem is a cornerstone result: it is formally proven that “no general algorithm exists that solves the
halting problem for all possible program–input pairs” on a Turing-complete model of computation. Any
assertion that a method guarantees to resolve or decide the halting of arbitrary computations must
either:

Violate a proven theorem (requiring a revolutionary paradigm), or
Employ a hidden limitation that removes it from the scope of that theorem.

It is overwhelmingly likely that the second case applies here – in fact, as discussed, the patent’s method is
essentially to limit the class of programs to those that are deterministically structured. This is not a new
idea in principle. For example, there are well-known decidable subsets of problems and constrained
programming languages. A trivial example: the halting problem is decidable for certain finite-state or
strongly normalized systems. If you restrict programs such that they can only run for at most N steps or
only use loops that iterate over a fixed-size data structure, then one can in principle decide termination for
those programs by brute force or static analysis. The cost is that such a system cannot express every
computation that a full Turing machine could. The patent essentially defines a specialized
computational model (Sanskrit grammar-driven execution) which, by its construction, avoids unbounded
or unstructured loops. This means the model is likely not Turing-complete in the unrestricted sense (or if it is
Turing-complete, it achieves termination by relying on external semantic insight rather than algorithmic
decidability).

Assessment of Determinism and “No Infinite Loops”: The soundness of claiming “every computation path
has determinism” rests on how strictly the rules are applied. Panini’s grammatical system is indeed highly
deterministic for Sanskrit parsing – it was designed to produce a unique valid outcome for a given valid
sentence, using devices like the “ashtadhyayi” rules and meta-rules to resolve conflicts. If those principles
are perfectly translated into program control flow, one could imagine that at each step of execution, there is
no ambiguity about what operation happens next and no possibility of getting stuck in a cyclical rule
application. However, ensuring this in a general-purpose computer is non-trivial. One has to prove that the
grammar-based execution engine itself cannot enter a non-terminating state. While Panini’s grammar for
language is terminating (no one speaks an infinitely long sentence; the grammar won’t generate one due to
its design), when you start using grammar rules to generate or analyze computations, you must be careful
that you haven’t introduced the possibility of an infinite rewrite loop or an ambiguous rule application that
never resolves. The patent does not provide a formal proof of termination; it relies on analogy and the built-
in checks (like not allowing “zero-endings” and logging after n failed iterations). Without a rigorous proof,
the claim of total determinism is theoretical at best. In formal methods, one would typically have to show
that the set of grammar rules used for computation is confluent and strongly normalizing (i.e., any
sequence of rule applications reaches a normal form in finite steps). This is plausible, but not demonstrated
in the document.

Another soundness issue is the breadth of what the system can compute. If by enforcing termination
they have made the system less powerful than a Turing machine, then indeed halting is a simpler matter
but at the cost that some computations might not be representable. The patent suggests they can solve
very complex problems (even quantum physics equations) with this system, implying they believe it is
powerful. Yet, if it were truly as powerful as a universal Turing machine and always halts, that would

19

1.
2.

21

4

https://en.wikipedia.org/wiki/Halting_problem#:~:text=In%20computability%20theory%20%2C%20the,101%20but%20not%20computable
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the

logically imply a solution to the halting problem (a paradox). The resolution of this apparent paradox must
be that the system is either not fully general or uses additional non-algorithmic insight. The mention of
cross-verifying results against “four independent prior works” and references (some confidential) in the
result validation step hints that some solutions or outcomes are perhaps looked up or derived from
externally given knowledge rather than computed from scratch. In one embodiment, after computing the
wave-particle result, they “cross-verify the result against (i) the Viswamitra Rule and (ii) four confidential
references” . This suggests the system might rely on pre-derived truths or axioms to confirm it’s on the
right track. If those references include, say, known correct solutions or mathematical facts, the system could
be cheating by consulting an oracle of sorts (albeit a man-made one). In classical terms, that would be like
an algorithm that has a built-in table of answers or uses an oracle to avoid exploring an infinite space –
powerful, but outside the normal algorithmic paradigm.

From a computability theory standpoint, nothing in the patent indicates a truly super-Turing mechanism
(such as a hypercomputer, oracle Turing machine, or physical process that escapes the Church-Turing
thesis). They do use the term “quantum-semantic result” and draw an analogy to wave-particle duality, but
quantum computers themselves do not solve the halting problem or other uncomputable problems –
they only probabilistically speed up certain computations. The patent’s reference to quantum computing is
more about applying their method to quantum algorithms (like solving an S-matrix equation) rather than
using quantum mechanics to transcend Turing limits . In fact, they acknowledge that quantum computers
also face limitations rooted in unresolvable algorithmic constructs – a nod to the fact that quantum
algorithms can also loop indefinitely or have branching that is classically undecidable. Their proposed
remedy is the same: inject grammatical determinism to make quantum algorithms well-behaved.

In summary, the approach’s soundness hinges on it being a cleverly constrained system, not a magic
algorithm that breaks undecidability. If implemented exactly as envisioned, it could ensure that any
program you write in this new “Sanskrit assembly language” halts – but this is achieved by construction (by
not allowing truly open-ended logic), not by solving an impossible problem. This is analogous to how certain
provably terminating programming languages work in modern theory: you restrict what you can express
until you get a decidable system. That is perfectly sound, but it does not “resolve” the Halting Problem for
all computations – it sidesteps it for the computations expressible in that system. Should one try to step
outside those bounds, the system simply would not support it. Therefore, from a theoretical perspective,
the claim does not violate known results as long as we interpret it as “we built a system in which programs
always halt” (which is feasible), rather than “we can determine halting for any system” (which is provably
impossible). Given the lack of a formal proof in the patent, one must remain skeptical but acknowledge that
the general strategy (designing a non-Turing-complete deterministic computing model) is logically
consistent.

Do the Proposed Methods Truly “Resolve” the Halting Problem?

It appears that the methods rely on constrained, domain-specific mechanisms rather than any genuine
violation of the Halting Problem’s undecidability. In other words, they prevent the halting problem from
arising instead of solving it. This distinction is crucial. A true resolution of the Halting Problem would mean
one could take any arbitrary program and input and determine its fate. The patent does not provide a
means to do this for an arbitrary external program; instead, it defines a new programming paradigm where
programs are written in a way that their halting is guaranteed (or at least machine-checked) from the
outset.

27

27

17

28

5

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=inference,algebraic
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Problem%20which%20also%20comes%20in,the%20way%20of%20goal%20oriented

One way to view it is that the patent’s computing model likely corresponds to a subset of computations that
are total (always terminating). Many research efforts in programming languages have similarly aimed for
totality. For instance, the language Charity and certain uses of Agda/Coq (dependently typed languages)
restrict how recursion and loops work so that you can only write terminating programs – if you attempt
something that could be non-terminating, the compiler rejects it. The Viswamitra Rule seems to serve a
similar role: it is a gatekeeper that rejects non-terminating constructs (as defined by their grammar). So,
any algorithm that can’t be proven to fit the grammatical constraints would not run in this system. This is
not a general solution to halting; it’s a form of input sanitization. It ensures the inputs to the problem (the
programs themselves) are of a kind that halts. But if you were to feed an arbitrary piece of code (one not
written in their controlled Sanskrit-like language) to this system, it wouldn’t magically decide its halting
behavior – more likely, it wouldn’t know how to represent that code at all.

Another angle is the “domain-specific” nature of the solution. The patent seems particularly interested in
problems like parallel processing, machine learning model selection, and certain quantum physics
computations. In these domains, the halting problem often shows up in limited forms – e.g., an
optimization algorithm might fail to converge, or a search might not terminate because it keeps looking for
a better solution, or a concurrent system might deadlock. By focusing on these domains, one can craft
specific strategies to avoid those pitfalls. For example, goal-oriented selection in machine learning sounds
like a strategy to ensure an algorithm focuses on achieving a target (say, reaching a certain accuracy or
solution quality) and stops once it’s achieved, rather than iterating endlessly. This is a form of bounded
search – not exploring the entire space blindly, but using heuristics or knowledge (here, grammar rules or
inference rules) to cut it off. That certainly can prevent infinite loops in practice, but it relies on domain
heuristics. It won’t apply to every conceivable program, just those that fit the paradigm (like iterative
improvement algorithms, search problems, etc.). Thus, the methods constitute domain-specific fixes or
workarounds for non-termination: useful, perhaps, but not a general algorithmic breakthrough.

It’s also worth noting an implicit assumption: The system “knows” when a computation path is leading
nowhere (thanks to the Viswamitra guard) and can terminate or redirect it. In classical terms, this is like
having an algorithm that monitors another algorithm and stops it if it detects it’s looping uselessly. But
Rice’s theorem and related results tell us that any non-trivial property of the function computed by an
arbitrary program is undecidable. How does the Sanskrit system evade this? By making the property
trivial or at least decidable by construction. If the only programs allowed are those with a particular
structure (perhaps akin to a well-formed derivation tree in grammar), then determining if the program will
finish might reduce to checking that the derivation tree adheres to certain patterns, which is decidable. It’s
somewhat analogous to how regular expressions or context-free grammars have decidable equivalence
and termination properties, whereas an arbitrary Turing machine does not. The price is that a context-free
grammar can’t do everything a Turing machine can – it’s less powerful. The patent’s frequent reference to
formal language theory suggests they are confining computation to a grammar-driven model that is likely
not beyond a certain complexity class, ensuring decidability at each step .

In conclusion, the proposed methods do not violate the known undecidability of the Halting Problem;
rather, they circumvent it by designing a computing language and architecture that avoids the problematic
cases. This is a well-trodden path in theory (use a restricted model to regain decidability), but the
patent’s novelty is in anchoring that restriction in Sanskrit linguistic rules. The result is not a “magic bullet”
that would tell us whether an arbitrary C program halts, for example – it’s a specialized environment where
such questions shouldn’t even need to be asked because every program is meant to be halt-safe. In that
sense, saying it “overcomes” the Halting Problem is an overstatement; a more accurate description is that it

29

26

6

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1,Halting%20Problem%2C%20as%20exemplified
https://en.wikipedia.org/wiki/Halting_problem#:~:text=but%20are%20also%20guaranteed%20to,3

implements a halting-guaranteed computational model. This is a clever engineering approach, but it
doesn’t overturn Turing’s result any more than designing a car that cannot exceed the speed limit overturns
the concept of unbounded speed – it just avoids the scenario by limitation.

Prior Work and Scholarly Views on Sanskrit-Based Computation

The idea of drawing inspiration from Sanskrit grammar for computing is not entirely out of left field;
Sanskrit’s grammatical tradition has often been admired by computer scientists and linguists for its
algorithmic structure and precision. Pāṇini, the ancient grammarian (~5th century BCE), created the
Aṣṭādhyāyī, which is essentially a formal system of nearly 4,000 rules that can generate all valid Sanskrit
words and sentences from roots and suffixes. This has been likened to a programming language or
automaton by many scholars. For instance, researchers have noted that “computationally, grammars of
natural language are as powerful as any computing machine” in principle and that “Pāṇini’s grammar is
algebraic where a finite set of rules generates an infinite number of words and sentences” . In other words,
Pāṇini created a sort of generative grammar engine long before modern formal language theory – a fact
often cited to draw parallels between ancient linguistics and computer science. Indeed, the Backus-Naur
Form (BNF) used to define programming language syntax in the 20th century is conceptually similar to how
Pāṇini’s production rules define Sanskrit constructs. This historical context explains why someone might
look to Sanskrit grammar for inspiration in designing computing systems.

Notable modern references include:

In 1985, Rick Briggs (a NASA researcher) published a paper in AI Magazine titled “Knowledge
Representation in Sanskrit and Artificial Intelligence.” This is often misquoted in popular media. What
Briggs actually argued was that Sanskrit’s grammatical clarity could be useful for representing
knowledge without ambiguity in AI systems . He demonstrated that a natural language
(Sanskrit) could be used in a formal, unambiguous way akin to an artificial language, which was a
remarkable observation for AI knowledge bases. Briggs did not claim that Sanskrit was a superior
programming language or that it enabled supercomputing – he focused on natural language
understanding and semantic precision. Unfortunately, his paper spawned exaggerated claims on the
internet, such as the myth that “NASA is using Sanskrit to program AI” or building Sanskrit-based
supercomputers. These claims have been debunked thoroughly. A fact-checking article notes: “A
1985 paper by Rick Briggs just says that Sanskrit could be used for knowledge representation in AI
research; it doesn’t talk about any supercomputers based on Sanskrit.” There is no evidence that
NASA or any reputable institution has a secret Sanskrit-based supercomputer project – that is
internet lore.

In India, public figures occasionally tout Sanskrit as “the best language for computer algorithms.” For
example, a former Indian Home Minister in 2015 claimed “NASA had said Sanskrit was the most
suitable language for computer supercomputers”, which was a distortion of the Briggs article. Experts
have pushed back on this: Dr. Pawan Goyal, a computer scientist at IIT Kharagpur, clarified that
“Sanskrit, like any other natural language such as English or Hindi, is definitely not directly usable as a
programming language. These rumours are detrimental to the respect that the ancient science of
Vyakarana (grammar) genuinely deserves.” . This reflects the scholarly consensus: Sanskrit’s
grammar is elegant and has inspired aspects of formal language theory, but it does not
miraculously bypass the hard problems of computer science. One cannot simply code in Sanskrit

30

31

•

32 33

34

•

35

7

https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=ourselves,arranged%20into%20sublists%2C%20and%20the
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=morpho%02phonemic%20rules,has%20exactly%20the%20same%20general
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c#:~:text=An%20excerpt%20from%20the%20paper,language%20also%2C%20and%20that%20much
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c#:~:text=Another%20big%20advantage%20that%20Sanskrit,is%20rather%20inaccurate%20at%20times
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=,in%20the%20post%20is%20FALSE
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=uncontrollable%20disinformation,of%20automated%20computational%20processing%20techniques

and ignore issues like complexity or undecidability – you would still need to define algorithms and
data structures, subject to the same mathematical laws as any other implementation.

There have been attempts to formally study Pāṇini’s grammar from a computational lens.
Researchers like Sumitra M. Katre, P. Scharf, and others have written about computational models of
Sanskrit grammar. Subhash Kak, a computer scientist, has also co-authored works (e.g. with Saroja
Bhate) examining the structure of Pāṇini’s rules and drawing analogies to automata and production
systems . These works celebrate the fact that Pāṇini invented a sort of “language machine”
centuries before Turing. However, none of this prior literature claims that using Pāṇini’s system
would give a computer capabilities beyond a Turing machine. In fact, if one formalizes Pāṇini’s
grammar, it falls within the Chomsky hierarchy of grammars. It’s extremely sophisticated (some parts
are context-sensitive, some are context-free, etc.), but it doesn’t transcend computability as we
understand it. At best, one might equate it to a very powerful grammar engine, potentially Turing-
complete in generative capacity (since a grammar can simulate computation if allowed unrestricted
rules). But if it is Turing-complete, it cannot avoid the halting problem either – unless, again, usage is
restricted. And if it’s restricted to guarantee termination, then it’s not fully Turing-complete.

Mīmāṁsā logic and Indian philosophy: The patent also invokes Mīmāṁsā, which is a system of
interpretation for Vedic texts that includes rules for resolving contradictions and deciding priorities
of rules (like when two injunctions conflict, which one to follow). Mīmāṁsā has parallels with formal
logic and legal reasoning. There is interesting scholarship drawing parallels between Mīmāṁsā rules
and modern logic programming or inference systems, but these are exploratory. No mainstream
computer science research has shown that Mīmāṁsā inference can solve, say, NP-complete
problems efficiently or decide halting. The patent’s idea to use Mīmāṁsā for “goal-oriented
selection” is novel, but would require casting that philosophical logic into an algorithm. Prior works
in this space are scant – this is largely uncharted territory.

In light of this, credible peer-reviewed support for the notion of Sanskrit grammar overcoming core
Turing-completeness limitations is virtually nonexistent. The claims in the patent are quite
extraordinary and stand at the fringe. On the contrary, credible voices urge caution. The consensus is that
while Sanskrit is very systematic and can inform computational linguistics (e.g., unambiguous parsing,
formal grammar design), it does not confer any supernatural computational power. The fact-check by
Mandadi (2020) on the NASA-supercomputer rumor sums it up well: “These are just rumours… such claims are
FALSE.” . No known publication in a reputable computer science journal has demonstrated a Sanskrit-
based algorithm or machine that solves undecidable problems or outperforms standard models in a
fundamental way. Therefore, the patent stands largely on its own ideas, with at best tangential support
from linguistic computing research (for the plausibility of mapping grammar to computation) and with
direct skepticism from experts regarding any grand claims.

Feasibility and Implications for ML, Quantum Computing, and AI

Even if we accept the patent’s premises, the practical feasibility of implementing this Sanskrit-based
supercomputing architecture is a major question. The patent envisions a full stack: from a new
programming language (based on Sanskrit sentences) to a compiler, to a custom hardware (FPGA/ASIC) that

•

36 37

•

34 38

8

https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=computing%20machine,morphs%2C%20one%20class%20being%20the
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=of%20Sanskrit,rules%20of%20affixation%20%E2%80%93
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=,in%20the%20post%20is%20FALSE
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=are%20just%20rumours,of%20automated%20computational%20processing%20techniques

executes grammar rules in parallel, to specialized modules for quantum equation solving . This is an
ambitious undertaking that would require significant development and validation:

Hardware Implementation: Designing a processor or FPGA configuration that natively enforces
Paninian grammar rules is unprecedented. While it’s conceivable to implement rule-based execution
(similar to how Prolog engines or Lisp machines were built in the past), mapping an ancient linguistic
framework onto silicon is complex. The patent’s Appendix A suggests a proof-of-concept using an
FPGA is planned, with an estimate of “maximum 4 years” to develop the Sanskrit-based C code for it

. This timeline hints that even the inventors expect a long road to just get a prototype. The
feasibility will depend on whether the grammar-driven control can be made efficient. There’s a risk
that adding all these checks (parsing every instruction with an inference engine) could introduce
overhead that outweighs the benefit of removing queues. Traditional CPUs are highly optimized; a
grammar-centric CPU might spend a lot of its time just ensuring rules are followed rather than doing
useful math, unless very cleverly optimized.

Performance Implications: If, however, they can implement it efficiently, the architecture might
excel in parallel workloads. Eliminating locks, context switches, and wait-queues could, in theory,
yield speedups for concurrency-heavy tasks. The patent specifically claims a “leapfrog improvement in
performance” for tasks like shortest path computations when using the Sanskrit FPGA versus a
traditional algorithm on FPGA . This remains to be demonstrated. One potential advantage is if
the Viswamitra Rule can prevent race conditions and the need for backtracking, the computations
might scale more linearly with added processors. But this is speculative – we would need
benchmarks to believe it. The real-time inference claim implies that the system could be great for AI
inference tasks where many possibilities are evaluated in parallel and you want an answer quickly
(perhaps things like theorem proving, logic programming queries, etc., could benefit from a goal-
directed approach).

Machine Learning (ML): The implications for ML are intriguing but unclear. Modern machine
learning (deep learning, specifically) is not obviously related to Sanskrit grammar. It relies mostly on
linear algebra and gradient descent, which are numeric, not symbolic, processes. If the patent’s
methods apply, it might be more relevant to symbolic AI or knowledge-based systems – for
example, expert systems, planning algorithms, or any AI that involves search through a space of
discrete possibilities (where pruning by grammar rules could help). The “goal-oriented selection”
could, for instance, refer to picking the best hypothesis in a hypothesis space without brute-force
search, using some encoded domain knowledge. This resonates more with classical AI than with, say,
training a neural network. So the architecture might find niche use in areas like combinatorial
optimization, automated reasoning, or perhaps new forms of program synthesis, rather than
replacing tensor operations in neural networks. Another angle: they mention inception vs perception
problem – possibly referring to differentiating between a generated plan (inception) and observed
data (perception). If the Viswamitra Rule helps an AI system know when to stop generating
hypotheses (inception) and focus on perception (or vice versa), it could improve convergence of
algorithms that loop otherwise. Again, these are fairly high-level ideas with no concrete
demonstration yet.

Quantum Computing: The patent’s mention of quantum-algebraic computations and S-matrix
bootstrap equations suggests they think their approach can handle complex mathematical
problem-solving that even quantum computers struggle with. The S-matrix bootstrap is a method in

10 39

•

40

•

41

•

•
42 43

9

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=system%2C%20comprising%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=8,further%20comprising%20a%20Quantum
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=3,using%20mmap%20run%20the%20fpga
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1,traditional%20algorithm%20and%20solve%20a
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=8,further%20comprising%20a%20Quantum
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=13,further%20comprising%20mapping

quantum field theory requiring solving certain nonlinear constraints – it’s basically a tough
optimization/search problem in an infinite-dimensional space. It’s hard to imagine how Sanskrit
grammar directly helps here, except possibly by providing a structured way to navigate the solution
space (maybe treating it like parsing a sentence where the equation’s terms are components to be
matched). If their system can indeed map such equations to a grammar problem, a deterministic
inference engine might avoid the combinatorial explosion by cutting off invalid combinations early
(like how grammar forbids invalid sentences, it would forbid invalid equation configurations). The
implication is a sort of heuristic quantum solver built into hardware. That could be impactful – but
it sounds almost too good to be true without evidence. At this point, it’s aspirational. Classical and
quantum algorithms for these problems are an active research area, and it would be revolutionary if
a grammatical approach in hardware made a serious dent. We should treat this claim with healthy
skepticism until a prototype shows results.

Cryptography and Data Transformations: The patent also hints at applications in cryptography
(the wave-particle operator producing new numeric transforms) . For example, 2 * 3 = 1 (mod
something) could imply they’re creating non-standard algebraic groups or rings for encryption –
perhaps a system where numbers combine in unexpected ways that could hide information
(steganographic or cryptographic schemes). Sanskrit grammar might influence how data is broken
into parts and permuted (similar to how sentences can be re-ordered without changing meaning, as
Sanskrit allows free word order due to inflection). A “semantic” multiplication that loses conventional
properties might be used to obscure data. While intriguing, any new cryptographic transform would
need rigorous security analysis. It’s not automatically useful unless it withstands cryptanalysis. So,
there’s a long way from a quirky operation like 2*3=1 to a secure encryption algorithm.

In terms of feasibility: Building a full software ecosystem on this is a huge task. People would need to
learn a Sanskrit-inspired programming language, or use the “Pre-Programming Module” to convert from
Python/C to Sanskrit form, which itself is a complex compiler undertaking . There would also be a
cultural/educational gap: not many developers or researchers know Sanskrit grammar deeply. The patent
assumes a PHOSITA (Person Having Ordinary Skill in the Art) who is versed in the Halting Problem, compiler
theory and Panini’s sutras – which is a rare combination of expertise. This underscores that the idea
is quite cross-disciplinary and ahead of its time. If it were to gain traction, it might involve collaborations
between computer scientists, linguists, and hardware engineers, which is challenging to coordinate.

Implications if successful: If even part of this vision succeeds, it could have some notable implications:

We might get new models of parallel computation that avoid common pitfalls like deadlocks and
race conditions. That could improve the reliability of concurrent software and possibly speed it up by
removing the need for heavy synchronization. It aligns with the ongoing search for better
concurrency models (e.g., message-passing, dataflow architectures, etc., which also try to avoid
explicit locks and halting issues).

We could see a revival of interest in grammar-based programming. Perhaps not Sanskrit per se,
but the idea of writing programs in a highly structured natural-language-like syntax that the
machine can deterministically understand. This could influence language design, maybe making
programming more accessible or more mathematically rigorous in terms of semantics.

•
44

45 46

29 47

•

•

10

file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=wave
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=11.%20A%20method%20for%20on,execution%20of%20quantum%20algebraic
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=15,further%20comprising%20translating
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1,Halting%20Problem%2C%20as%20exemplified
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=language%20theory%2C%20including%20their%20historical,linkage%20to

In AI, a successful goal-directed inference engine in hardware could complement today’s neural
networks by providing powerful symbolic reasoning capabilities. For instance, one could imagine an
AI system where a neural net does pattern recognition (perception) and then the Sanskrit-grammar
engine does logical planning or explanation (inception), all without getting stuck in logical loops. This
kind of hybrid AI is a holy grail (combining learning with reasoning), and while the patent doesn’t
explicitly mention neural nets, the general positioning is that it could enhance machine inference
generally.

For quantum computing, if their approach can effectively orchestrate quantum operations with
fewer errors or solve supporting classical problems faster, it could become a part of the quantum
software stack. But right now, this is speculative. There’s a large gap between claiming to map
equations to Sanskrit grammar and actually outperforming state-of-the-art numerical solvers or
quantum algorithms.

In conclusion, the Sanskrit-based supercomputing architecture is a bold and highly unconventional
proposal. Its theoretical basis does not obviously contradict known computer science (since it leans on
restricting computation to avoid undecidability), but it remains unproven in practice. The lack of peer-
reviewed validation or prototypes means we should temper expectations. The feasibility challenges – in
hardware design, compiler construction, and performance optimization – are non-trivial. The implications,
if it did work as claimed, would indeed be far-reaching: we would have a new paradigm to write programs
(in a sense, programming in an ancient grammatical framework), and possibly more robust parallel and AI
systems free from certain classical bugs (no deadlocks, no infinite training loops). However, given the
current state of knowledge, these claims should be viewed with caution. As one fact-checking source put it,
extraordinary claims about Sanskrit and computing have often turned out to be “just rumours”, and in reality
“no evidence [shows] that Sanskrit is an ultimate programming language” or a key to future supercomputers

. It remains an area for imaginative experimentation, and we would need to see concrete peer-
reviewed results or working prototypes to truly assess its impact on machine learning, quantum computing,
and beyond. Until then, this patent represents a fascinating convergence of ancient linguistic theory with
modern computing aspirations – an idea that is as thought-provoking as it is speculative.

References

Sudhakar, G.N.V.S., “Computational Methods Driven by a Sanskrit-Based, Self-Refining Wave-Particle
Numeric Framework”, Indian Patent Application 202541071171 (provisional patent filing, 2025)

.

Wikipedia: “Halting problem” – definition and undecidability of the Halting Problem ; practical note
on using restricted languages to guarantee termination .

Mandadi, Abhishek (2020), Fact Check: NASA scientist did not state that America is planning to create
supercomputers based on Sanskrit, FACTLY media report – debunking myths around Sanskrit in
computing .

Bhate, Saroja & Kak, Subhash (1993), “Pāṇini’s Grammar and Computer Science” – in Computing
Science in Ancient India, reporting that Paninian grammar is comparable to an algorithmic
generative system .

•

•

34 38

•
2 6

7

• 19

26

•

34 38

•

30 31

11

https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=,in%20the%20post%20is%20FALSE
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=are%20just%20rumours,of%20automated%20computational%20processing%20techniques
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=m%20and%20n%2C%20the%20system%E2%80%94based,based
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
https://en.wikipedia.org/wiki/Halting_problem#:~:text=In%20computability%20theory%20%2C%20the,101%20but%20not%20computable
https://en.wikipedia.org/wiki/Halting_problem#:~:text=but%20are%20also%20guaranteed%20to,3
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=,in%20the%20post%20is%20FALSE
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=are%20just%20rumours,of%20automated%20computational%20processing%20techniques
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=ourselves,arranged%20into%20sublists%2C%20and%20the
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=morpho%02phonemic%20rules,has%20exactly%20the%20same%20general

Briggs, Rick (1985), “Knowledge Representation in Sanskrit and Artificial Intelligence” – AI Magazine 6(1),
1985 (discussed in) – noted that Sanskrit’s grammatical formalisms mirror modern knowledge
representation, but does not claim any halting-problem solution or supercomputer design.

Additional content drawn from patent Appendix and forum materials: clarification of Viswamitra rule
and elimination of queues , and descriptions of the proposed hardware modules and their
functions .

App_num_202541071171_sanskrit_provisional_patent.pdf
file://file-D4Yav1HjXVGGiU58Aq8HCJ

breakthroughinitiatives.org
https://breakthroughinitiatives.org/forum/downloadfile/25

Halting problem - Wikipedia
https://en.wikipedia.org/wiki/Halting_problem

ece.lsu.edu
https://www.ece.lsu.edu/kak/bhate.pdf

The truth behind the Sanskrit argument. | by Abhi Avasthi | Medium
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c

NASA scientist did not state that America is planning to create supercomputers based on Sanskrit
- FACTLY
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/

•
32

•
9 4

10 48

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20 21 22 23 24 25 27 28 29 39 40 41 42

43 44 45 46 47 48

12

19 26

30 31 36 37

32 33

34 35 38

12

https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c#:~:text=An%20excerpt%20from%20the%20paper,language%20also%2C%20and%20that%20much
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=operations%2C%20the%20resulting%20architecture%20obviates,conventional
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=queuing%20mechanisms%20and%20enhancing%20parallelism,The%20system
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=system%2C%20comprising%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%28a%29%20translating%20a%20high,description%20into%20a
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=m%20and%20n%2C%20the%20system%E2%80%94based,based
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=m%20and%20n%2C%20the%20system%E2%80%94based,based
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=wave
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=queuing%20mechanisms%20and%20enhancing%20parallelism,The%20system
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Further%2C%20the%20traditional%20computing%20architectures,rely%20on
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Panini%E2%80%99s%20Maheshwara%E2%80%AFSutras%20codify%20Sanskrit%20grammar,to%20forbid
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=concerns%20a%20hardware,that
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=operations%2C%20the%20resulting%20architecture%20obviates,conventional
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=system%2C%20comprising%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=,that%20maps%20parsed
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Self,as
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Programming%20Module%20%28PM%29%3A
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Example%3A,based%20constructs
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=directly%20in%20hardware%2C%20thereby%20eliminating,conventional
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=inference,algebraic
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Algebraic%20Solver%20Module%20that%20maps,Sanskrit%20grammar
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=tasks,and%20memory%20overhead%E2%80%94
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=contrast%2C%20Applicant%20has%20discovered%20what,is%20herein%20called%20the
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Mimamsa%20principles%3B
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=,process%20to%20select
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%E2%80%93%20If%20validation%20fails%2C%20return,Component
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%E2%80%93%20If%20validation%20continues%20to,fail%20after%20n
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=Problem%20which%20also%20comes%20in,the%20way%20of%20goal%20oriented
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1,Halting%20Problem%2C%20as%20exemplified
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=8,further%20comprising%20a%20Quantum
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=3,using%20mmap%20run%20the%20fpga
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=1,traditional%20algorithm%20and%20solve%20a
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=8,further%20comprising%20a%20Quantum
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=13,further%20comprising%20mapping
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=wave
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=11.%20A%20method%20for%20on,execution%20of%20quantum%20algebraic
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=15,further%20comprising%20translating
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=language%20theory%2C%20including%20their%20historical,linkage%20to
file://file-D4Yav1HjXVGGiU58Aq8HCJ#:~:text=%28a%29%20translating%20a%20high,description%20into%20a
file://file-D4Yav1HjXVGGiU58Aq8HCJ
https://breakthroughinitiatives.org/forum/downloadfile/25#:~:text=of%201850s%27%20black%20body%20radiation,This%20affects%20quantum%20computers%20also
https://breakthroughinitiatives.org/forum/downloadfile/25
https://en.wikipedia.org/wiki/Halting_problem#:~:text=In%20computability%20theory%20%2C%20the,101%20but%20not%20computable
https://en.wikipedia.org/wiki/Halting_problem#:~:text=but%20are%20also%20guaranteed%20to,3
https://en.wikipedia.org/wiki/Halting_problem
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=ourselves,arranged%20into%20sublists%2C%20and%20the
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=morpho%02phonemic%20rules,has%20exactly%20the%20same%20general
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=computing%20machine,morphs%2C%20one%20class%20being%20the
https://www.ece.lsu.edu/kak/bhate.pdf#:~:text=of%20Sanskrit,rules%20of%20affixation%20%E2%80%93
https://www.ece.lsu.edu/kak/bhate.pdf
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c#:~:text=An%20excerpt%20from%20the%20paper,language%20also%2C%20and%20that%20much
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c#:~:text=Another%20big%20advantage%20that%20Sanskrit,is%20rather%20inaccurate%20at%20times
https://avasthiabhyudaya.medium.com/the-truth-behind-the-sanskrit-argument-310d6299cd1c
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=,in%20the%20post%20is%20FALSE
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=uncontrollable%20disinformation,of%20automated%20computational%20processing%20techniques
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/#:~:text=are%20just%20rumours,of%20automated%20computational%20processing%20techniques
https://factly.in/nasa-scientist-did-not-state-that-america-is-planning-to-create-supercomputers-based-on-sanskrit/

	Evaluation of the Sanskrit-Based “Wave-Particle” Computing Framework
	Overview of the Patent’s Claims
	How the Halting Problem Is Addressed in the Patent
	Soundness of the Approach vs. Theoretical Computer Science
	Do the Proposed Methods Truly “Resolve” the Halting Problem?
	Prior Work and Scholarly Views on Sanskrit-Based Computation
	Feasibility and Implications for ML, Quantum Computing, and AI
	References

